Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 14(8)2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38668199

RESUMEN

Manipulating plasmonic chirality has shown promising applications in nanophotonics, stereochemistry, chirality sensing, and biomedicine. However, to reconfigure plasmonic chirality, the strategy of constructing chiral plasmonic systems with a tunable morphology is cumbersome and complicated to apply for integrated devices. Here, we present a simple and effective method that can also manipulate chirality and control chiral light-matter interactions only via strong coupling between chiral plasmonic nanoparticles and excitons. This paper presents a chiral plexcitonic system consisting of L-shaped nanorod dimers and achiral molecule excitons. The circular dichroism (CD) spectra in our strong-coupling system can be calculated by finite element method simulations. We found that the formation of the chiral plexcitons can significantly modulate the CD spectra, including the appearance of new hybridized peaks, double Rabi splitting, and bisignate anti-crossing behaviors. This phenomenon can be explained by our extended coupled-mode theory. Moreover, we explored the applications of this method in enantiomer ratio sensing by using the properties of the CD spectra. We found a strong linear dependence of the CD spectra on the enantiomer ratio. Our work provides a facile and efficient method to modulate the chirality of nanosystems, deepens our understanding of chiral plexcitons in nanosystems, and facilitates the development of chiral devices and chiral sensing.

2.
Opt Express ; 32(7): 11522-11533, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38570997

RESUMEN

Hybrid quasiparticles produced by the strong interaction between nanostructures and excitons will exhibit optical chirality when one of the coupled components is chiral. Due to the tunability of hybrid states, the coupled system has potential applications in chiral devices and chiral sensing. However, reported chiral materials including chiral molecules and three-dimensional chiral structures in the coupled system limit the application due to the weak chiroptical responses and difficult fabrication, respectively. In this paper, we design chiral quasibound states in the continuum (q-BIC) metasurface by introducing planar symmetry-breaking and z-axis perturbation into an array structure whose unit cell is a C4 rotational symmetric disk. By tuning the polarization state of the eigenmode, a significant chiroptical response is obtained in our q-BIC metasurface. Furthermore, mode splitting is observed not only in the reflection spectrum but also in the circular dichroism (CD) spectrum in the chiral q-BIC and monolayer WS2 strong coupling system, which indicates the realization of the exciton-polariton optical chirality. More importantly, one order of magnitude difference in the reflection to left and right circularly polarized light is achieved resulting in significant CD signals. Our work provides a new strategy to realize the exciton polaritons with significant chiroptical responses, which exhibits promising applications in on-chip chiral devices.

3.
Nano Lett ; 23(20): 9428-9436, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37823692

RESUMEN

Chiral plexcitons, produced by the strong interaction between plasmonic nanocavities and chiral molecules, can provide a promising direction for controlling chiroptical responses on the nanoscale. Here, we reveal the chiral origin and electromagnetic hybridization process in chiral strongly coupled systems. The mechanism and unique advantages of chiral plexcitons for fine-tuning circular dichroism (CD) responses are demonstrated, providing a rule for controlling chiral light-matter interactions in complex chiral nanosystems. Furthermore, we experimentally demonstrate the fine-tuning of chiral plexcitons in hybrid systems consisting of plasmonic nanoparticles and chiral J-aggregates. Continuous and precise tuning of the CD resonance positions was successfully achieved in a given structure. Compared with the previous work, the CD spectral tuning accuracy has been improved by an order of magnitude, which can reach the level of 1 nm. Our findings provide a feasible strategy and theoretical basis for accurately controlling chirality in multiple dimensions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...